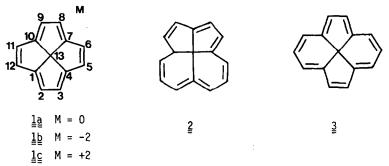
ON THE PLANARITY OF TETRACYCLO [5.5.1.04,13010,13] TRIDECAHEXAENE


Michael C. Böhm, Rolf Gleiter^{*} und Peter Schang

Institut für Organische Chemie der Technischen Hochschule, D-6100 Darmstadt (W.-Germany)

<u>Summary.</u> MINDO/3 calculations indicate that tetracyclo $[5.5.1.0^{4,13}0^{10,13}]$ tridecahexaene $(\underline{1a})$ is nonplanar (D_2 symmetry) in its ground state with pronounced bond alternance.

Recently it was proposed that a central tetracoordinate carbon atom enclosed by a [12] annulene ($\underline{1}$) should have a planar shape [1]. It was argued that the energetically unfavourable HOMO (a_{2u}) at the planar central atom is stabilized by interaction with the LUMO of a 12 π system [2].

To test this proposal we have carried out MINDO/3 calculations [3] on $\underline{1}\underline{a}$, the corresponding dianion $\underline{1}\underline{b}$ and dication $\underline{1}\underline{c}$ and the analogous [14]annulenes $\underline{2}$ and $\underline{3}$ by minimizing the total energy with respect to all geometrical parameters.

The total energy of $\underline{1}\underline{a}$, $\underline{1}\underline{b}$ and $\underline{1}\underline{c}$ under various geometrical constraints was studied in detail. For the neutral species $\underline{1}\underline{a}$ it was found that the structure of Towest energy belongs to point group D_2 . The angles and bond lengths of $\underline{1}\underline{a}$ together with the structural parameters of the ionic counterparts $\underline{1}\underline{v}$ and $\underline{1}\underline{c}$ are collected in Figure 1. From Table 1 it is seen that the two structures with a planar central atom are much higher in energy; the energy difference between D_2 and D_{2h} is 49.09 kcal/mol, the D_{4h} triplet conformation is separated by 59.61 kcal/mol from the structure of lowest energy. This result is anticipated if one compares the energy calculated for the structural deformation $T_{d} \rightarrow D_{4h}$ of methane (80-100 kcal/mol) [2] [5] [6] [7] with resonance energies calculated for annulenes [8]. Inspection of Figure 1 shows a marked bond alternation of the peripheral ring in the D_{2h} and D_2 structure of $\underline{1}\underline{a}$.

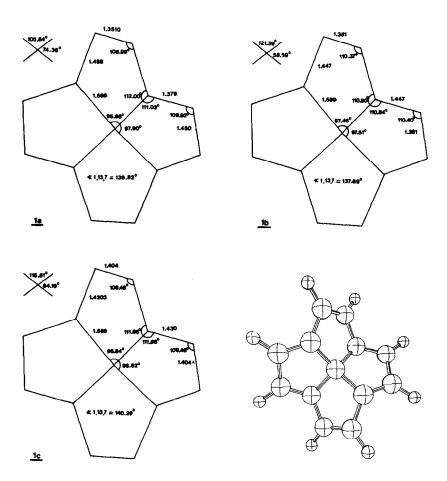


Figure 1. Bond lengths and bond angles of <u>la</u>, <u>lb</u> and <u>lc</u> together with perspective view of <u>la</u>

In Table 2 we have listed the calculated net charges of the carbon atoms. While in both planar forms D_{2h} and D_{4h} there is a strong negative charge at the central atom, there is no charge separation between the central unit and the surrounding moiety in the structure of lowest energy, D_2 .

To study geometrical preferences as a function of the occupation numbers of the frontier orbitals and to simulate the effect of electron-donating and electron-withdrawing substituents at the molecular periphery, we also performed calculations on the charged species $\underline{1}\underline{b}$ and $\underline{1}\underline{c}$. Once again the D₂ structure emerges as the one of lowest energy; in $\underline{1}\underline{b}$ D_{4h} and D₂ are separated by 46.93 kcal/mol, while the energy difference in case of the dication $\underline{1}\underline{c}$ amounts to 44.40 kcal/mol. A comparison between the structures $\underline{1}\underline{a}$, $\underline{1}\underline{b}$ and $\underline{1}\underline{c}$ shows that the bond localization is less marked in the two charged systems; both planar structures $\underline{1}\underline{b}$ and $\underline{1}\underline{c}$ belong to the point group D_{4h}. Inspection of Table 2 leads to the surprisingly result, that the central atom carries more negative charge in the cationic compound $\underline{1}\underline{c}$ than in $\underline{1}\underline{b}$. A common aspect of the three systems $\underline{1a}$, $\underline{1b}$ and $\underline{1c}$ is the remarkable tendency to avoid a planar conformation of the central carbon atom and distribute the strain energy over all carbon centers. This leads to highly directed " π -orbitals" at C₁, C₄, C₇ and C₁₀ as shown below. The sum of all carbon-carbon angles at these centers reaches a value of 348.22⁰ in $\underline{1a}$ and 345.17⁰/349.95⁰ in $\underline{1b}/\underline{1c}$ respectively. This sum is in between the value of 328.41⁰ for sp³ hybridization and 360⁰ for sp² hybridization.

The tendency to maintain a tetrahedral carbon atom at the center in $\frac{2}{2}$ and $\frac{3}{2}$ is more pronounced than in $\frac{1}{2}$ due to the greater flexibility of the systems. Once again our calculations predict a strong bond localization for both structures leading to a pair of unequivalent five- and six-membered rings around the nonplanar central atom.

This study indicates that the various synthetic attempts [1] [9] towards a compound like $\frac{1}{2}$ to $\frac{3}{2}$ with a planar tetracoordinated central atom will lead at most to energetically unfavourable olefinic ring systems.

Table 1

Heats of formation (ΔH_f in kcal/mol) of <u>la</u>, <u>lb</u> and <u>lc</u>

System	Point Group	Spin Multiplicity	∆H _f (kcal/mol)
	D _{4h}	Triplet	262.08
<u>1</u> a	D _{2h}	Singlet	251.57
	D ₂	Singlet	202.48
Ĩ₽	D _{4h}	Singlet	314.16
	D ₂	Singlet	267.23
<u>1c</u>	D _{4h}	Singlet	654.06
	D ₂	Singlet	609.65

	Ta	b1	е	2
--	----	----	---	---

Net charges in $\underline{1}\underline{a}$, $\underline{1}\underline{b}$ and $\underline{1}\underline{c}$						
System	Point Group	Carbon- Center	Net Charge			
<u>1</u> a	D _{4h}	1 2 13	.082 037 169			
<u>1</u> g	D _{2h}	1 2 5 13	.145 076 036 295			
<u>1a</u>	D ₂	1 2 5 13	.011 016 010 .017			
<u>1</u> ₽	D _{4h}	1 2 13	011 143 100			
<u>1</u> Þ	D ₂	1 2 5 13	134 088 088 .142			
<u>1</u> ⊆	D _{4h}	1 2 13	.246 .055 393			
<u>1</u> ⊆	D ₂	1 2 5 13	.125 .087 .087 102			

References

- [1] R. Keese, A. Pfenninger and A. Roesle, Helv. Chim. Acta, <u>62</u>, 326 (1979).
- [2] R. Hoffmann, R. W. Alder and C. F. Wilcox, Jr., J. Am. Chem. Soc., <u>92</u>, 4992 (1970).
- [3] R. Bingham, M. J. S. Dewar and D. H. Lo, J. Am. Chem. Soc., <u>97</u>. 1285 (1975); we actually carried out the calculations by the modified MINDO/3 version of P. Bischof [4].
- [4] P. Bischof, J. Am. Chem. Soc., 98, 6844 (1976).
- [5] W. A. Lathan, W. J. Hehre, L. A. Curtiss and J. A. Pople, J. Am. Chem. Soc., <u>93</u>, 6377 (1971).
- [6] K. B. Wiberg, G. B. Ellison and J. J. Wendoloski, J. Am. Chem. Soc., <u>98</u>, 1212 (1976).
- [7] J. B. Collins, J. D. Dill, E. D. Jemmis, M. Apeloig, P. v. R. Schleyer, R. Seeger and J. A. Pople, J. Am. Chem. Soc., <u>98</u>, 5419 (1976).
- [8] M. J. S. Dewar and R. C. Dougherty "The PMO Theory of Organic Chemistry", Plenum Press, New York, London 1975.
- [9] R. Mitschka, J. M. Cook and U. Weiss, J. Am. Chem. Soc., 100, 3974 (1978).

(Received in Germany 25 April 1979)